
ColorSpace Data Viewer

User manual - Version 1.0

Philippe Colantoni

1 Introduction

CDV is an OpenGL wrapper, which include high level functions. The goal of
this software is not to provide a nice and smart new language but rather a fast
and easy to use programming interface to visualize color data.

2 File Format

There are (actually) 3 parts in a CDV file:

1. header: This part describes only the 3D axis used and is only provided
for convenience purpose. It enables users to choose standard axis (like
L*a*b* color space; xyY ...) or custom axis.

2. displaylist: OpenGL can optimize 3D rendering using display list. This
mechanism allows user to compile complex 3D rendering as a single display
list which can be executed in the script.

3. script: This part contains all the 3D data which will be displayed.

Example

this is a comment

begin header

axis RGB # this script display data in the RGB color space

axiscolor x 1 1 1 # the R axis is white (not red anymore)

backgroundcolor 0 0 0 1 # black background

end header

begin displaylist

newlist myfirstlist # I create a new list named myfirstlist

color3f 1 0 0 # the current color is red

volume box # display a 3D box (size 1)

endlist # terminate the display list

end displaylist

begin script

1

pointsize 3 # the current point size is now 3

color3f 1 0 0 # the current color is red

begin points # all the data provided to the graphic pipeline

will be used to display points

vertex3f .5 .5 .5 # display a point at the (0.5,0.5,0.5) position

vertex3f 1 .3 .4 # display a point at the (1,.3,.4) position

end points # no more points to visualize

pushmatrix # we stack the current coordinate system

translatef 1 1 1 # we translate the new coordinate system

scale .3 .5 .1 # we scale the new coordinate system

calllist myfirstlist # display the red box in the new coordinate system

the center of the displayed box is (1,1,1)

popmatrix # return to the original coordinate system

end script

3 Software Manual

You will find in this section how to interact with CDV.

3.1 File open

There are 4 ways to open a script file:

1. using the command line;

2. by a drag and drop from a file explorer;

3. using the File/Open script menu;

4. using the File/Re-Open script menu.

When you re-open a file you keep the current 3D position and orientation.

4 CDV File Header

The header section allows user to define the axis properties (the default axis is
XYZ). It is possible to build custom axis.

4.1 Debug

4.1.1 Debug OpenGL

debugopengl

Allows to enable the openGL debug suppont in CDV. With this headed com-
mand CDV is able to indicate all the openGL error and the shader compilation
problems.

2

4.2 Window Properties

4.2.1 Window Size

windowsize width height

Allows user to define the size of the displayed window.

4.2.2 Window Position

windowposition x y

Allows user to define the position of the displayed window.

4.2.3 Background Color

backgroundcolor r g b a

Allows user to define the background color of the displayed window.
Example

begin header

windowsize 300 500

windowposition 100 100

end header

4.3 Camera Properties

4.3.1 Camera

camera distancetothecenter theta phi fov perspective/orthographic projection

Allows user to define the camera properties of the displayed window.

4.3.2 Axis properties

4.3.3 Axis

axis colorspace

or

axis custom nameXaxis begX endX stepsX nameYaxis begY endY stepsY nameZaxis begZ endZ stepsZ

Example

axis custom tX 0 10 10 tY 0 5 5 tZ -5 5 10

4.3.4 Display grid

displaygrid axis bool (x,y or z and true or false)

3

4.3.5 Display axis

displayaxis bool (true or false)

4.3.6 Axis color

axiscolor axis r g b

4.3.7 Hash color

hashcolor r g b

4.3.8 Bound color

boundcolor r g b

4.3.9 Axis scale factor

axisscalefactor axis scale

5 CDV Scripting Language

We propose here to describe the basic features of CDV scripting language. As
we wrote previously this language is an OpenGL wrapper which include high
level function (volume visualization, image mapping, display list, blending...)

5.1 Data Visualization Language

5.2 Basics

In OpenGL, most geometric objects are drawn by enclosing a series of coordinate
sets that specify vertices and optionally normals, texture coordinates, and colors
between glBegin/glEnd command pairs. For example, to specify a triangle with
vertices at (0,0,0), (0,1,0) and (1,0,1), one could write:

glBegin(GL_TRIANGLES);

glVertex3f(0,0,0);

glVertex3f(0,1,0);

glVertex3f(1,0,1);

glEnd();

Each vertex may be specified with two, three, or four coordinates four co-
ordinates indicate a homogeneous three-dimensional location). In addition, a
current normal, current texture coordinates, and current color may be used
in processing each vertex. OpenGL uses normals in lighting calculations; the
current normal is a three-dimensional vector that may be set by sending three
coordinates that specify it. Color may consist of either red, green, blue, and
alpha values (when OpenGL has been initialized to RGBA mode) or a single

4

color index value (when initialization specified color index mode). One, two,
three, or four texture coordinates determine how a texture image maps onto a
primitive.

Each of the commands that specify vertex coordinates, normals, colors, or
texture coordinates comes in several flavors to accommodate differing applica-
tion’s data formats and numbers of coordinates. Data may also be passed to
these commands either as an argument list or as a pointer to a block of stor-
age containing the data. The variants are distinguished (in the C language) by
mnemonic suffixes.

Most OpenGL commands that do not specify vertices and associated infor-
mation may not appear between glBegin and glEnd. This restriction allows
implementations to run in an optimized mode while processing primitive speci-
fications so that primitives may be processed as efficiently as possible.

The previous OpenGL sequence can be translated by the following script:

begin triangles

vertex3f 0 0 0

vertex3f 0 1 0

vertex3f 1 0 1

end triangles

5.3 OpenGL Commands

5.4 Arrays manipulation

5.4.1 Array

array name type size values...

where name is the name of the array, type is the data type (int, float or
boolean), size is the size of the array and values... the size elements of the
array.

Example

array vertexArray float 9 0 0 0 1 0 0 1 1 1

array index int 3 0 1 2

5.4.2 Enableclientstate

enableclientstate arraystate

where arraystate can be: vertexarray, colorarray, normalarray or textureco-
ordarray.

5.4.3 Disableclientstate

disableclientstate arraystate

where arraystate can be: vertexarray, colorarray, normalarray or textureco-
ordarray.

5

5.4.4 Vertexpointer

vertexpointer size datatype stride arrayname

5.4.5 Colorpointer

colorpointer size datatype stride arrayname

5.4.6 Normalpointer

normalpointer size datatype stride arrayname

5.4.7 Texcoordpointer

texcoordpointer size datatype stride arrayname

5.4.8 Arrayelement

arrayelement index

5.4.9 Drawelements

drawelements primitive size arrayname

Example

begin script

pointsize 10

disable backfacecull

array vertexArray float 9 0 0 0 1 0 0 1 1 1

array vertexArray2 float 12 0 0 0.5 5 1 0 .5 5 1 1 1.5 5

array index int 3 0 1 2

enableclientstate vertexarray

vertexpointer 3 float 0 vertexArray

color 1 0 0

begin triangles

arrayelement 0

arrayelement 1

arrayelement 2

end triangles

array colors float 12 0 0 1 .5 1 0 0 .5 0 1 0 .5

enableclientstate colorarray

6

colorpointer 4 float 0 colors

vertexpointer 3 float 4 vertexArray2

enable blend # enable transparency

depthmask false # should be used before transparency

drawelements triangles 3 index

depthmask true # should be used after transparency

disable blend

disableclientstate colorarray

disableclientstate vertexarray

end script

5.5 Z Buffer Commands

5.5.1 Depthfunc

depthfunc type

Sets the comparison function for the depth test. The value for func must
be never, always, less, lequal, equal, gequal, greater, or notequal. An incoming
fragment passes the depth test if its z value has the specified relation to the
value already stored in the depth buffer. The default is less, which means that
an incoming fragment passes the test if its z value is less than that already
stored in the depth buffer. In this case, the z value represents the distance from
the object to the viewpoint, and smaller values mean the corresponding objects
are closer to the viewpoint.

5.5.2 Depthmask

depthmask bool

Sets the masks used to control writing into the Z buffers.

5.6 Data Transfer Functions

5.6.1 Vertex

vertex2f valX valY valZ

v valX valY valZ

v3f valX valY valZ

vertex valX valY valZ

vertex3f valX valY valZ

v4f valX valY valZ valW

vertex4f valX valY valZ valW

7

Send a position in the graphics pipeline.

5.6.2 Color

c valR valG valB

c3f valR valG valB

color valR valG valB

color3f valR valG valB

c4f valR valG valB valA

color4f valR valG valB valA

Send a color in the graphics pipeline.

5.6.3 Normal

n valX valY valZ

n3f valX valY valZ

normal valX valY valZ

normal3f valX valY valZ

Send a normal in the graphics pipeline.

5.6.4 Texture coordinate

t valU valV

t2f valU valV

texture valU valV

texture2f valU valV

Send a texture coordinate in the graphics pipeline.

5.7 Polygon Attributes

5.7.1 Shade Model

shademodel mode

Sets the shading model. The mode parameter can be either smooth (the
default) or flat.

With flat shading, the color of one vertex of a primitive is duplicated across
all the primitive’s vertices. With smooth shading, the color at each vertex is
treated individually. For a line primitive, the colors along the line segment are
interpolated between the vertex colors. For a polygon primitive, the colors for
the interior of the polygon are interpolated between the vertex colors.

8

5.7.2 Polygon mode

polygonmode face mode

Controls the drawing mode for a polygon’s front and back faces. The pa-
rameter face can be frontandback, front, or back; mode can be point, line, or fill
to indicate whether the polygon should be drawn as points, outlined, or filled.
By default, both the front and back faces are drawn filled.

For example, you can have the front faces filled and the back faces outlined
with two calls to this routine:

polygonmode front fill

polygonmode back line

5.7.3 Front Face

frontface mode

Controls how front-facing polygons are determined. By default, mode is ccw,
which corresponds to a counterclockwise orientation of the ordered vertices of a
projected polygon in window coordinates. If mode is cw, faces with a clockwise
orientation are considered front-facing.

5.7.4 Cull Face

cullface mode

Indicates which polygons should be discarded (culled) before they’re con-
verted to screen coordinates. The mode is either front, back, or frontandback to
indicate front-facing, back-facing, or all polygons. To take effect, culling must
be enabled using enable with cullface; it can be disabled with disable and the
same argument.

5.8 States

You can enable/disable several properties of the OpenGL pipeline.

enable property

disable property

The following properties are available:

backfacecull

lighting

texture2d

blend

depthtest

colormaterial

lighting

linestipple

9

The default values are:

enable depthtest

enable backfacecull

enable lighting

enable colormaterial

5.9 Lines And Points

pointsize, linewidth, linestipple

5.10 Basic 3D Primitives

begin primitivename

end primitivename

primitive name

points

lines

linestrip

lineloop

triangles

trianglefan

trianglestrip

quads

quadstrip

polygon

10

5.11 Transformations

A modeling transformation is used to position and orient the model. For ex-
ample, you can rotate, translate, or scale the model - or some combination of
these operations. To make an object appear further away from the viewer, two
options are available - the viewer can move closer to the object or the object can
be moved further away from the viewer. Moving the viewer will be discussed
later when we talk about viewing transformations. For right now, we will keep
the default ”camera” location at the origin, pointing toward the negative z-axis,
which goes into the screen perpendicular to the viewing plane.

When transformations are performed, a series of matrix multiplications are
actually performed to affect the position, orientation, and scale of the model.
You must, however, think of these matrices multiplications occurring in the
opposite order from how they appear in the code. The order of transformations
is critical. If you perform transformation A and then perform transformation B,
you almost always get something different than if you do them in the opposite
order. Push and pop matrix

Since the transformations are stored as matrices, a matrix stack provides
an ideal mechanism for doing this kind of successive copying, translating, and
throwing away. The command pushmatrix copies the matrix on the top of the
matrix stack.The matrix contents are, therefore, duplicated in both the top
and the second-to-the-top matrices. This top matrix can then be translated
and drawn, as desires, and ultimately destroyed using the popmatrix command.

11

This leaves you right where you were before and ready to repeat the process for
the next version of the object. Scaling

5.11.1 Scale

The scaling command scalef multiplies the current matrix by a matrix that
stretches, shrinks, or reflects an object along the axes. Each x-, y-, and z-
coordinate of every point in the object is multiplied by the corresponding ar-
gument x, y, or z. scalef is the only one of the three modeling transformations
that changes the apparent size of an object: scaling with values greater than
1.0 stretches an object, and using values less than 1.0 shrinks it. Scaling with a
-1.0 value reflects an object across an axis.

scalef valX valY valZ

5.11.2 Translation

The translation command translatef multiplies the current matrix by a matrix
that moves (translates) an object by the given x-, y-, and z-values.

translatef valX valY valZ

5.11.3 Rotation

The rotation command rotatef multiplies the current matrix that rotates an
object in a counterclockwise direction about the ray from the origin through
the point (x,y,z). The angle parameter specifies the angle of rotation in degrees.
An object that lies farther from the axis of rotation is more dramatically rotated
(has a larger orbit) than an object drawn near the axis.

rotatef angle valX valY valZ

Example

pushmatrix

pushmatrix

color3f 1 0 0

translatef 10 10 10

rotatef 45 1 0 0

volume box

popmatrix

pushmatrix

color3f 0 0 1

translatef -5 -5 -5

scalef 2 2 1

volume sphere 2

12

popmatrix

popmatrix

5.12 Lighting

5.12.1 Enable/Disable lighting

enable lighting

disable lighting

5.12.2 Enable/Disable light

enablelight lightnumber
disablelight lightnumber

5.12.3 Light properties

light properties

Where properties can be:

• spotexponent lightnumber float

• spotcutoff lightnumber float

• constantattenuation lightnumber float

• linearattenuation lightnumber float

• quadraticattenuation lightnumber float

• ambient lightnumber float float float float

• diffuse lightnumber float float float float

• specular lightnumber float float float float

• position lightnumber float float float float

• spotdirection lightnumber float float float

5.12.4 Light models

lightmodel properties

Where properties can be:

• lightmodellocalviewer float

• lightmodelambient float float float

• lightmodeltwoside float

13

5.13 Color material

5.13.1 Enable/Disable color material

enable colormaterial

disable colormaterial

5.13.2 Material properties

material face properties

Where face can be:

• front

• back

• frontandback

Where properties can be:

• ambient float float float float

• diffuse float float float float

• specular float float float float

• emission float float float float

• shininess float

• ambientanddiffuse float float float float

5.14 Texturing

You need to enable texture mapping before using this feature.

bind "filename"

Example:

enable texture2d

bind "myimage.tif"

begin quads

texture2f 0 0

vertex 0 0 0

texture2f 1 0

vertex 1 0 0

texture2f 1 1

vertex 1 1 0

texture2f 0 1

vertex 0 1 0

end quads

disable texture2d

14

5.15 Multi-Texturing

activetexture, clientactivetexture, multitexcoord2f

5.16 Blending

Blending allows visualizing transparency effects.

5.16.1 Enable/Disable blending

enable blend

disable blend

Example:

enable blend

disable backfacecull

depthmask false

color4f .6 .6 .9 .5

begin quads

vertex3f 0 0 .6

vertex3f 0 1 .6

vertex3f 1 1 .6

vertex3f 1 0 .6

end quads

enable backfacecull

disable blend

depthmak true

5.16.2 Blendind function

blendfunc sourcefactor destinationfactor

The blendfunc function specifies pixel arithmetic.

15

Factor (f(R),f(G),f(B),f(A))

zero (0,0,0,0)
one (1,1,1,1)
srccolor (R(s)/k(R),G(s)/k(G),B(s)/k(B),A(s)/k(A))
oneinussrccolor (1,1,1,1)

(R(s)/k(R),G(s)/k(G),B(s)/k(B),A(s)/k(A))
dstcolor (R(d)/k(R),G(d)/k(G),B(d)/k(B),A(d)/k(A))
oneminusdstcolor (1,1,1,1)
srcalpha (R(d)/k(R),G(d)/k(G),B(d)/k(B),A(d)/k(A))

(A(s)/k(A),A(s)/k(A),A(s)/k(A),A(s)/k(A))
oneminussrcalpha (1,1,1,1)

(A(s)/k(A),A(s)/k(A),A(s)/k(A),A(s)/k(A))
dstalpha (A(d)/k(A),A(d)/k(A),A(d)/k(A),A(d)/k(A))
oneminusdstalpha (1,1,1,1)

(A(d)/k(A),A(d)/k(A),A(d)/k(A),A(d)/k(A))
srcalphasaturate (i,i,i,1)

5.17 Display list

You must define a display list in the displaylist section of your script file.

5.17.1 New list

This function creates a new display list.

newlist listname

5.17.2 Delete list

This function destroys a display list. It is useful to use this function when you
have to manage several display lists.

deletelist listname

5.17.3 Call list

Calllist allows user to execute a display list in a script (or in an other display list).

calllist listname

5.17.4 Example

#

display list section

16

#

begin displaylist

create a display list which contains 2 spheres

newlist mylist

pushmatrix

color3f 1 0 0

translatef -2 0 0

volume sphere 2

color3f 0 0 1

translatef 4 0 0

volume sphere 2

popmatrix

endlist # you must end the display list !!!!

end displaylist

#

script section

#

begin script

enable backfacecull # optimization

color3f 0 1 0

volume box

pushmatrix

translate the coordinate system

translatef 5 5 0

display the elements

calllist mylist

popmatrix

pushmatrix

translate and rotate the coordinate system

translatef 5 5 5

rotatef 90 0 1 0

display the elements

calllist mylist

popmatrix

end script

5.18 Clipping planes

A clipping plane specifies a plane against which all geometry is clipped.

17

5.18.1 Enable/Disable clipping plane

enableclipplane planenumber
disableclipplane planenumber

5.18.2 Clipping plane

clipplane planenumber float float float float

5.19 Specific Functions

5.19.1 Swizzle

The swizzle command allows the components of vectors to be rearranged to
form new vectors. The characters x, y, z, and w represent the first, second,
third, and fourth components of the original vector, respectively.

This function is useful when we use color space like CIELAB because the
representation in this color space is not L*a*b* but a*b*L*.

swizzle transformation

where transformation can be xyz, yxz, zyx...
Example

swizzle zxy

begin points

vertex 200 10 10

vertex 200 100 10

vertex 200 100 100

end points

is equal to:

begin points

vertex 10 10 200

vertex 100 10 200

vertex 100 100 200

end points

5.20 Line stipple

The line stipple specifies the line stipple pattern.

5.20.1 Enable/Disable line stipple

enable linestipple

disable linestipple

18

5.20.2 Linestipple function

linestipple factor pattern

Where factor (int) is a multiplier for each bit in the line stipple pattern and
pattern is a 16-bit integer whose bit pattern determines which fragments of a
line will be drawn when the line is rasterized. Bit zero is used first, and the
default pattern is all ones.

5.21 Symbolic Constants

5.21.1 Define

The define command allows creating constants (int, float or boolean constants).

define name value

Example

define t1 5

define t2 4

define t3 2

begin points

vertex3f t1 t2 t3

vertex3f t1 t1 t1

vertex3f t3 t2 t1

end points

is equal to:

begin points

vertex3f 5 4 2

vertex3f 5 5 5

vertex3f 2 4 5

end points

5.22 Paths

5.22.1 Add Texture Path

This function allows to add a search path in the texture search paths. You can
define theses paths using this command or be setting the CDV TEXTURE PATH
enviroment variable (each paths separate by a ’;’)

addtexturepath "pathname"

Example:

19

enable texture2d

addtexturepath "whateveryourwanthere"

bind "myimage.tif"

if myimage.tif is not in the current directory

CDV will try to find it the directory named whateveryourwanthere

begin quads

texture2f 0 0

vertex 0 0 0

texture2f 1 0

vertex 1 0 0

texture2f 1 1

vertex 1 1 0

texture2f 0 1

vertex 0 1 0

end quads

disable texture2d

6 CDV Scripting Language - Extensions

6.1 Text Visualization

Only one font is available. You must use transformation in order to have your
text in a correct orientation and position in the 3D space.

text "text to write"

6.2 Complex 3D Primitives

6.3 Volumes

volume volumetype optional parameters

volumetype

tetrahedron

box

dodecahedron

icosahedron

cylinder slices top bottom

cone slices bottom

sphere lod (can be 1 2 or 3)

Example

20

disable cullface

pushmatrix

color3f 1 0 0

translatef 1 0 0

volume cylinder 20 true true

popmatrix

pushmatrix

color3f 0 1 0

translatef 0 1 0

volume cone 10 false

popmatrix

pushmatrix

color3f 0 0 1

translatef 1 1 0

volume sphere 2

popmatrix

7 CDV Scripting Language - Shaders

7.1 Shaders

vertexshader, vertexshaderfromfile, fragmentshader, fragmentshaderfromfile

7.2 Programs

program, useprogram

7.3 Uniform variables

uniform, uniformmatrix

21

