
PARALLEL COMPUTING 
 

See: https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-

tutorial  

Overview 
What is Parallel Computing? 
Serial Computing 
Traditionally, software has been written for serial computation: 

• A problem is broken into a discrete series of instructions 
• Instructions are executed sequentially one after another 
• Executed on a single processor 
• Only one instruction may execute at any moment in time 

 

 For example:  

 

Parallel Computing 
In the simplest sense, parallel computing is the simultaneous use of multiple compute 
resources to solve a computational problem: 

• A problem is broken into discrete parts that can be solved concurrently 

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial


• Each part is further broken down to a series of instructions 
• Instructions from each part execute simultaneously on different processors 
• An overall control/coordination mechanism is employed 

 

For example: 

 

• The computational problem should be able to:  
• Be broken apart into discrete pieces of work that can be solved simultaneously; 
• Execute multiple program instructions at any moment in time; 
• Be solved in less time with multiple compute resources than with a single 

compute resource. 
• The compute resources are typically:  

• A single computer with multiple processors/cores 
• An arbitrary number of such computers connected by a network 

Parallel Computers 

• Virtually all stand-alone computers today are parallel from a hardware perspective:  
• Multiple functional units (L1 cache, L2 cache, branch, prefetch, decode, floating-

point, graphics processing (GPU), integer, etc.) 
• Multiple execution units/cores 
• Multiple hardware threads 



 

IBM BG/Q COMPUTE CHIP WITH 18 CORES (PU) AND 16 L2 CACHE UNITS (L2) 

• Networks connect multiple stand-alone computers (nodes) to make larger 
parallel computer clusters. 

 

• For example, the schematic below shows a typical LLNL parallel computer cluster:  
• Each compute node is a multi-processor parallel computer in itself 
• Multiple compute nodes are networked together with an Infiniband network 
• Special purpose nodes, also multi-processor, are used for other purposes 



 

• The majority of the world's large parallel computers (supercomputers) are clusters of 
hardware produced by a handful of (mostly) well known vendors. 

 

Source: Top500.org 

https://www.top500.org/


Why Use Parallel Computing? 

The Real World is Massively Parallel 

• In the natural world, many complex, interrelated events are happening at the same 
time, yet within a temporal sequence. 

• Compared to serial computing, parallel computing is much better suited for 
modelling, simulating and understanding complex, real world phenomena. 

Main Reasons 

SAVE TIME AND/OR MONEY 

• In theory, throwing more resources at a task will shorten its time to completion, with 
potential cost savings. 

• Parallel computers can be built from cheap, commodity components. 

• Many problems are so large and/or complex that it is impractical or impossible to 
solve them using a serial program, especially given limited computer memory. 

• Example: "Grand Challenge Problems" (en.wikipedia.org/wiki/Grand_Challenge) 
requiring petaflops and petabytes of computing resources. 

• Example: Web search engines/databases processing millions of transactions every 
second 

• A single compute resource can only do one thing at a time. Multiple compute 
resources can do many things simultaneously. 

• Example: Collaborative Networks provide a global venue where people from around 
the world can meet and conduct work "virtually". 

• Using compute resources on a wide area network, or even the Internet when local 
compute resources are scarce or insufficient. 

• Example: SETI@home (setiathome.berkeley.edu) has over 1.7 million users in nearly 
every country in the world. (May, 2018). 

• Example: Folding@home (folding.stanford.edu) over 1.8 million contributors 
globally (May, 2018) 

• Modern computers, even laptops, are parallel in architecture with multiple 
processors/cores. 

• Parallel software is specifically intended for parallel hardware with multiple cores, 
threads, etc. 

• In most cases, serial programs run on modern computers "waste" potential computing 
power. 

https://en.wikipedia.org/wiki/Grand_Challenges
mailto:SETI@home
http://setiathome.berkeley.edu/
mailto:Folding@home
http://folding.stanford.edu/


 

The Future 

• During the past 20+ years, the trends indicated by ever faster networks, distributed 
systems, and multi-processor computer architectures (even at the desktop level) 
clearly show that parallelism is the future of computing. 

• In this same time period, there has been a greater than 500,000x increase in 
supercomputer performance, with no end currently in sight. 

• The race is already on for Exascale Computing!  
• Exaflop = 1018 calculations per second 

Who is Using Parallel Computing? 

Science and Engineering 

• Historically, parallel computing has been considered to be "the high end of 
computing", and has been used to model difficult problems in many areas of science 
and engineering: 

• Atmosphere, Earth, Environment 
• Physics - applied, nuclear, particle, condensed matter, high pressure, fusion, photonics 
• Bioscience, Biotechnology, Genetics 
• Chemistry, Molecular Sciences 
• Geology, Seismology 
• Mechanical Engineering - from prosthetics to spacecraft 
• Electrical Engineering, Circuit Design, Microelectronics 
• Computer Science, Mathematics 
• Defense, Weapons 

• Today, commercial applications provide an equal or greater driving force in the 
development of faster computers. These applications require the processing of large 
amounts of data in sophisticated ways. For example: 

• "Big Data", databases, data mining 
• Artificial Intelligence (AI) 
• Oil exploration 
• Web search engines, web-based business services 
• Medical imaging and diagnosis 
• Pharmaceutical design 
• Financial and economic modelling 
• Management of national and multi-national corporations 
• Advanced graphics and virtual reality, particularly in the entertainment industry 



• Networked video and multi-media technologies 
• Collaborative work environments 

Concepts and Terminology 
von Neumann Architecture 

 

JOHN VON NEUMANN CIRCA 1940S 

(SOURCE: LANL ARCHIVES) 

• Named after the Hungarian mathematician John von Neumann who first authored the 
general requirements for an electronic computer in his 1945 papers. 

• Also known as "stored-program computer" - both program instructions and data are 
kept in electronic memory. Differs from earlier computers which were programmed 
through "hard wiring". 

• Since then, virtually all computers have followed this basic design: 

 

• Comprised of four main components: 
• Memory 



• Control Unit 
• Arithmetic Logic Unit 
• Input/Output 

• Read/write, random access memory is used to store both program instructions and 
data 
• Program instructions are coded data which tell the computer to do something 
• Data is simply information to be used by the program 

• Control unit fetches instructions/data from memory, decodes the instructions and 
then sequentially coordinates operations to accomplish the programmed task. 

• Arithmetic Unit performs basic arithmetic operations 
• Input/Output is the interface to the human operator 

• More info on his other remarkable accomplishments: 
http://en.wikipedia.org/wiki/John_von_Neumann 

• So what? Who cares?  
• Well, parallel computers still follow this basic design, just multiplied in units. The 

basic, fundamental architecture remains the same. 

Flynn's Classical Taxonomy 

• There are different ways to classify parallel computers. Examples are available in the 
references. 

• One of the more widely used classifications, in use since 1966, is called Flynn's 
Taxonomy. 

• Flynn's taxonomy distinguishes multi-processor computer architectures according to 
how they can be classified along the two independent dimensions of Instruction 
Stream and Data Stream. Each of these dimensions can have only one of two 
possible states: Single or Multiple. 

• The matrix below defines the 4 possible classifications according to Flynn: 

 

Single Instruction, Single Data (SISD) 

• A serial (non-parallel) computer 
• Single Instruction: Only one instruction stream is being acted on by the CPU during 

any one clock cycle 
• Single Data: Only one data stream is being used as input during any one clock cycle 

http://en.wikipedia.org/wiki/John_von_Neumann
https://hpc.llnl.gov/sites/default/files/parallelClassifications_0.pdf


• Deterministic execution 
• This is the oldest type of computer 
• Examples: older generation mainframes, minicomputers, workstations and single 

processor/core PCs. 

 

 

 

Single Instruction, Multiple Data (SIMD) 

• A type of parallel computer 
• Single Instruction: All processing units execute the same instruction at any given 

clock cycle 
• Multiple Data: Each processing unit can operate on a different data element 
• Best suited for specialized problems characterized by a high degree of regularity, 

such as graphics/image processing. 
• Synchronous (lockstep) and deterministic execution 
• Two varieties: Processor Arrays and Vector Pipelines 
• Examples:  

• Processor Arrays: Thinking Machines CM-2, MasPar MP-1 & MP-2, ILLIAC IV 
• Vector Pipelines: IBM 9000, Cray X-MP, Y-MP & C90, Fujitsu VP, NEC SX-2, 

Hitachi S820, ETA10 
• Most modern computers, particularly those with graphics processor units (GPUs) 

employ SIMD instructions and execution units. 

 

 



Multiple Instruction, Single Data (MISD) 

• A type of parallel computer 
• Multiple Instruction: Each processing unit operates on the data independently via 

separate instruction streams. 
• Single Data: A single data stream is fed into multiple processing units. 
• Few (if any) actual examples of this class of parallel computer have ever existed. 
• Some conceivable uses might be:  

• multiple frequency filters operating on a single signal stream 
• multiple cryptography algorithms attempting to crack a single coded message. 

 

 

 

Multiple Instruction, Multiple Data (MIMD) 

• A type of parallel computer 
• Multiple Instruction: Every processor may be executing a different instruction 

stream 
• Multiple Data: Every processor may be working with a different data stream 
• Execution can be synchronous or asynchronous, deterministic or non-deterministic 
• Currently, the most common type of parallel computer - most modern 

supercomputers fall into this category. 
• Examples: most current supercomputers, networked parallel computer clusters and 

"grids", multi-processor SMP computers, multi-core PCs. 
• Note many MIMD architectures also include SIMD execution sub-components 



 

 

 

 

Some General Parallel Terminology 

• Like everything else, parallel computing has its own "jargon". Some of the more 
commonly used terms associated with parallel computing are listed below. 

• Most of these will be discussed in more detail later. 

Supercomputing / High Performance Computing (HPC) 

Using the world's fastest and largest computers to solve large problems. 

Node 

A standalone "computer in a box". Usually comprised of multiple CPUs/processors/cores, 
memory, network interfaces, etc. Nodes are networked together to comprise a 
supercomputer. 

CPU / Socket / Processor / Core 

This varies, depending upon who you talk to. In the past, a CPU (Central Processing Unit) 
was a singular execution component for a computer. Then, multiple CPUs were 
incorporated into a node. Then, individual CPUs were subdivided into multiple "cores", 
each being a unique execution unit. CPUs with multiple cores are sometimes called 
"sockets" - vendor dependent. The result is a node with multiple CPUs, each containing 
multiple cores.  

Task 

A logically discrete section of computational work. A task is typically a program or 
program-like set of instructions that is executed by a processor. A parallel program 
consists of multiple tasks running on multiple processors. 

Pipelining 

Breaking a task into steps performed by different processor units, with inputs streaming 
through, much like an assembly line; a type of parallel computing. 

Shared Memory 

From a strictly hardware point of view, describes a computer architecture where all 
processors have direct (usually bus based) access to common physical memory. In a 



programming sense, it describes a model where parallel tasks all have the same "picture" 
of memory and can directly address and access the same logical memory locations 
regardless of where the physical memory actually exists. 

Symmetric Multi-Processor (SMP) 

Shared memory hardware architecture where multiple processors share a single address 
space and have equal access to all resources. 

Distributed Memory 

In hardware, refers to network-based memory access for physical memory that is not 
common. As a programming model, tasks can only logically "see" local machine memory 
and must use communications to access memory on other machines where other tasks 
are executing. 

Communications 

Parallel tasks typically need to exchange data. There are several ways this can be 
accomplished, such as through a shared memory bus or over a network, however the 
actual event of data exchange is commonly referred to as communications regardless of 
the method employed. 

Synchronization 

The coordination of parallel tasks in real time, very often associated with 
communications. Often implemented by establishing a synchronization point within an 
application where a task may not proceed further until another task(s) reaches the same 
or logically equivalent point. 

Synchronization usually involves waiting by at least one task, and can therefore cause a 
parallel application's wall clock execution time to increase. 

Granularity 

In parallel computing, granularity is a qualitative measure of the ratio of computation to 
communication. 

• Coarse: relatively large amounts of computational work are done between 
communication events 

• Fine: relatively small amounts of computational work are done between 
communication events 

Observed Speedup 

Observed speedup of a code which has been parallelized, defined as: 

        wall-clock time of serial execution 

        ----------------------------------- 

        wall-clock time of parallel execution 

One of the simplest and most widely used indicators for a parallel program's 
performance. 



Parallel Overhead 

The amount of time required to coordinate parallel tasks, as opposed to doing useful 
work. Parallel overhead can include factors such as: 

• Task start-up time 
• Synchronizations 
• Data communications 
• Software overhead imposed by parallel languages, libraries, operating system, etc. 
• Task termination time 

Massively Parallel 

Refers to the hardware that comprises a given parallel system - having many processing 
elements. The meaning of "many" keeps increasing, but currently, the largest parallel 
computers are comprised of processing elements numbering in the hundreds of 
thousands to millions. 

Embarrassingly Parallel 

Solving many similar, but independent tasks simultaneously; little to no need for 
coordination between the tasks. 

Scalability 

Refers to a parallel system's (hardware and/or software) ability to demonstrate a 
proportionate increase in parallel speedup with the addition of more resources. Factors 
that contribute to scalability include: 

• Hardware - particularly memory-cpu bandwidths and network communication 
properties 

• Application algorithm 
• Parallel overhead related 
• Characteristics of your specific application 



Limits and Costs of Parallel Programming 

Amdahl's Law 

 

 

• Amdahl's Law states that potential program speedup is defined by the fraction of code 
(P) that can be parallelized: 

                         1 

        speedup   =   -------- 

                       1 - P 

• If none of the code can be parallelized, P = 0 and the speedup = 1 (no speedup). 
• If all of the code is parallelized, P = 1 and the speedup is infinite (in theory). 
• If 50% of the code can be parallelized, maximum speedup = 2, meaning the code will 

run twice as fast. 



• Introducing the number of processors performing the parallel fraction of work, the 
relationship can be modeled by: 

                           1  

        speedup   =   ------------ 

                        P  +  S 

                       --- 

                        N 

• where P = parallel fraction, N = number of processors and S = serial fraction. 

• It soon becomes obvious that there are limits to the scalability of parallelism. For 
example: 

                           speedup 

              ------------------------------------- 

        N     P = .50   P = .90   P = .95   P = .99 

      -----   -------   -------   -------   ------- 

         10      1.82      5.26      6.89      9.17 

        100      1.98      9.17     16.80     50.25     

      1,000      1.99      9.91     19.62     90.99 

     10,000      1.99      9.91     19.96     99.02 

    100,000      1.99      9.99     19.99     99.90 

• "Famous" quote: You can spend a lifetime getting 95% of your code to be parallel, 
and never achieve better than 20x speedup no matter how many processors you 
throw at it! 

• However, certain problems demonstrate increased performance by increasing the 
problem size. For example: 

        2D Grid Calculations     

        Parallel fraction        85 seconds 85%    

        Serial fraction          15 seconds   15%    

• We can increase the problem size by doubling the grid dimensions and halving the 
time step. This results in four times the number of grid points and twice the number 
of time steps. The timings then look like:  

        2D Grid Calculations  

        Parallel fraction         680 seconds 97.84%    

        Serial fraction           15 seconds    2.16%    

• Problems that increase the percentage of parallel time with their size are more 
scalable than problems with a fixed percentage of parallel time. 



Complexity 

• In general, parallel applications are much more complex than corresponding serial 
applications, perhaps an order of magnitude. Not only do you have multiple 
instruction streams executing at the same time, but you also have data flowing 
between them. 

• The costs of complexity are measured in programmer time in virtually every aspect 
of the software development cycle:  
• Design 
• Coding 
• Debugging 
• Tuning 
• Maintenance 

• Adhering to "good" software development practices is essential when working with 
parallel applications - especially if somebody besides you will have to work with the 
software. 

Portability 

• Thanks to standardization in several APIs, such as MPI, POSIX threads, and OpenMP, 
portability issues with parallel programs are not as serious as in years past. 
However... 

• All of the usual portability issues associated with serial programs apply to parallel 
programs. For example, if you use vendor "enhancements" to Fortran, C or C++, 
portability will be a problem. 

• Even though standards exist for several APIs, implementations will differ in a 
number of details, sometimes to the point of requiring code modifications in order 
to effect portability. 

• Operating systems can play a key role in code portability issues. 
• Hardware architectures are characteristically highly variable and can affect 

portability. 

Resource Requirements 

• The primary intent of parallel programming is to decrease execution wall clock time, 
however in order to accomplish this, more CPU time is required. For example, a 
parallel code that runs in 1 hour on 8 processors actually uses 8 hours of CPU time. 

• The amount of memory required can be greater for parallel codes than serial codes, 
due to the need to replicate data and for overheads associated with parallel support 
libraries and subsystems. 

• For short running parallel programs, there can actually be a decrease in performance 
compared to a similar serial implementation. The overhead costs associated with 
setting up the parallel environment, task creation, communications and task 
termination can comprise a significant portion of the total execution time for short 
runs. 



Scalability 

 

• Two types of scaling based on time to solution: strong scaling and weak scaling. 
• Strong scaling:  

• The total problem size stays fixed as more processors are added. 
• Goal is to run the same problem size faster 
• Perfect scaling means problem is solved in 1/P time (compared to serial) 

• Weak scaling:  
• The problem size per processor stays fixed as more processors are added. The 

total problem size is proportional to the number of processors used. 
• Goal is to run larger problem in same amount of time 
• Perfect scaling means problem Px runs in same time as single processor run 

• The ability of a parallel program's performance to scale is a result of a number of 
interrelated factors. Simply adding more processors is rarely the answer. 

• The algorithm may have inherent limits to scalability. At some point, adding more 
resources causes performance to decrease. This is a common situation with many 
parallel applications. 

• Hardware factors play a significant role in scalability. Examples:  
• Memory-cpu bus bandwidth on an SMP machine 
• Communications network bandwidth 
• Amount of memory available on any given machine or set of machines 
• Processor clock speed 

• Parallel support libraries and subsystems software can limit scalability independent 
of your application. 



Parallel Computer Memory Architectures 
Shared Memory 
  

General Characteristics 

• Shared memory parallel computers vary widely, but generally have in common the 
ability for all processors to access all memory as global address space. 

• Multiple processors can operate independently but share the same memory 
resources. 

• Changes in a memory location effected by one processor are visible to all other 
processors. 

• Historically, shared memory machines have been classified as UMA and NUMA, 
based upon memory access times. 

Uniform Memory Access (UMA) 

• Most commonly represented today by Symmetric Multiprocessor (SMP) machines 
• Identical processors 
• Equal access and access times to memory 
• Sometimes called CC-UMA - Cache Coherent UMA. Cache coherent means if one 

processor updates a location in shared memory, all the other processors know about 
the update. Cache coherency is accomplished at the hardware level. 

 

Non-Uniform Memory Access (NUMA) 

• Often made by physically linking two or more SMPs 
• One SMP can directly access memory of another SMP 
• Not all processors have equal access time to all memories 
• Memory access across link is slower 
• If cache coherency is maintained, then may also be called CC-NUMA - Cache 

Coherent NUMA 



 

Advantages 

• Global address space provides a user-friendly programming perspective to memory 
• Data sharing between tasks is both fast and uniform due to the proximity of memory 

to CPUs 

Disadvantages 

• Primary disadvantage is the lack of scalability between memory and CPUs. Adding 
more CPUs can geometrically increases traffic on the shared memory-CPU path, and 
for cache coherent systems, geometrically increase traffic associated with 
cache/memory management. 

• Programmer responsibility for synchronization constructs that ensure "correct" 
access of global memory. 

Distributed Memory 

General Characteristics 

• Like shared memory systems, distributed memory systems vary widely but share a 
common characteristic. Distributed memory systems require a communication 
network to connect inter-processor memory. 

• Processors have their own local memory. Memory addresses in one processor do 
not map to another processor, so there is no concept of global address space across 
all processors. 

• Because each processor has its own local memory, it operates independently. 
Changes it makes to its local memory have no effect on the memory of other 
processors. Hence, the concept of cache coherency does not apply. 

• When a processor needs access to data in another processor, it is usually the task of 
the programmer to explicitly define how and when data is communicated. 
Synchronization between tasks is likewise the programmer's responsibility. 

• The network "fabric" used for data transfer varies widely, though it can be as simple 
as Ethernet.  



 

Advantages 

• Memory is scalable with the number of processors. Increase the number of 
processors and the size of memory increases proportionately. 

• Each processor can rapidly access its own memory without interference and without 
the overhead incurred with trying to maintain global cache coherency. 

• Cost effectiveness: can use commodity, off-the-shelf processors and networking. 

Disadvantages 

• The programmer is responsible for many of the details associated with data 
communication between processors. 

• It may be difficult to map existing data structures, based on global memory, to this 
memory organization. 

• Non-uniform memory access times - data residing on a remote node takes longer to 
access than node local data. 

Hybrid Distributed-Shared Memory 

General Characteristics 

• The largest and fastest computers in the world today employ both shared and 
distributed memory architectures. 

 

 

• The shared memory component can be a shared memory machine and/or graphics 
processing units (GPU). 

• The distributed memory component is the networking of multiple shared 
memory/GPU machines, which know only about their own memory - not the 
memory on another machine. Therefore, network communications are required to 
move data from one machine to another. 



• Current trends seem to indicate that this type of memory architecture will continue 
to prevail and increase at the high end of computing for the foreseeable future. 

Advantages and Disadvantages 

• Whatever is common to both shared and distributed memory architectures. 
• Increased scalability is an important advantage 
• Increased programmer complexity is an important disadvantage 

Parallel Programming Models 
Overview 

• There are several parallel programming models in common use:  
• Shared Memory (without threads) 
• Threads 
• Distributed Memory / Message Passing 
• Data Parallel 
• Hybrid 
• Single Program Multiple Data (SPMD) 
• Multiple Program Multiple Data (MPMD) 

• Parallel programming models exist as an abstraction above hardware and 
memory architectures. 

• Although it might not seem apparent, these models are NOT specific to a particular 
type of machine or memory architecture. In fact, any of these models can 
(theoretically) be implemented on any underlying hardware. Two examples from the 
past are discussed below. 

SHARED memory model on a DISTRIBUTED memory machine 

Kendall Square Research (KSR) ALLCACHE approach. Machine memory was physically 
distributed across networked machines, but appeared to the user as a single shared 
memory global address space. Generically, this approach is referred to as "virtual shared 
memory". 

 

 

  



DISTRIBUTED MEMORY MODEL ON A SHARED MEMORY MACHINE 
Message Passing Interface (MPI) on SGI Origin 2000. The SGI Origin 2000 employed the 
CC-NUMA type of shared memory architecture, where every task has direct access to 
global address space spread across all machines. However, the ability to send and 
receive messages using MPI, as is commonly done over a network of distributed 
memory machines, was implemented and commonly used. 

 

 

  

• Which model to use? This is often a combination of what is available and personal 
choice. There is no "best" model, although there certainly are better 
implementations of some models over others. 

• The following sections describe each of the models mentioned above, and also 
discuss some of their actual implementations. 

Shared Memory Model (without threads) 

 

• In this programming model, processes/tasks share a common address space, which 
they read and write to asynchronously. 

• Various mechanisms such as locks / semaphores are used to control access to the 
shared memory, resolve contentions and to prevent race conditions and deadlocks. 

• This is perhaps the simplest parallel programming model. 
• An advantage of this model from the programmer's point of view is that the notion 

of data "ownership" is lacking, so there is no need to specify explicitly the 



communication of data between tasks. All processes see and have equal access to 
shared memory. Program development can often be simplified. 

• An important disadvantage in terms of performance is that it becomes more difficult 
to understand and manage data locality:  
• Keeping data local to the process that works on it conserves memory accesses, 

cache refreshes and bus traffic that occurs when multiple processes use the 
same data. 

• Unfortunately, controlling data locality is hard to understand and may be 
beyond the control of the average user. 

Implementations: 

• On stand-alone shared memory machines, native operating systems, compilers 
and/or hardware provide support for shared memory programming. For example, 
the POSIX standard provides an API for using shared memory, and UNIX provides 
shared memory segments (shmget, shmat, shmctl, etc). 

• On distributed memory machines, memory is physically distributed across a network 
of machines, but made global through specialized hardware and software. A variety 
of SHMEM implementations are available: http://en.wikipedia.org/wiki/SHMEM. 

Threads Model 

 

• This programming model is a type of shared memory programming. 

https://en.wikipedia.org/wiki/SHMEM


• In the threads model of parallel programming, a single "heavy weight" process can 
have multiple "light weight", concurrent execution paths. 

• For example:  
• The main program a.out is scheduled to run by the native operating system. 

a.out loads and acquires all of the necessary system and user resources to run. 
This is the "heavy weight" process. 

• a.out performs some serial work, and then creates a number of tasks (threads) 
that can be scheduled and run by the operating system concurrently. 

• Each thread has local data, but also, shares the entire resources of a.out. This 
saves the overhead associated with replicating a program's resources for each 
thread ("light weight"). Each thread also benefits from a global memory view 
because it shares the memory space of a.out. 

• A thread's work may best be described as a subroutine within the main program. 
Any thread can execute any subroutine at the same time as other threads. 

• Threads communicate with each other through global memory (updating 
address locations). This requires synchronization constructs to ensure that more 
than one thread is not updating the same global address at any time. 

• Threads can come and go, but a.out remains present to provide the necessary 
shared resources until the application has completed. 

Implementations: 

• From a programming perspective, threads implementations commonly comprise:  
• A library of subroutines that are called from within parallel source code 
• A set of compiler directives imbedded in either serial or parallel source code 

In both cases, the programmer is responsible for determining the parallelism (although 
compilers can sometimes help). 

• Threaded implementations are not new in computing. Historically, hardware 
vendors have implemented their own proprietary versions of threads. These 
implementations differed substantially from each other making it difficult for 
programmers to develop portable threaded applications. 

• Unrelated standardization efforts have resulted in two very different 
implementations of threads: POSIX Threads and OpenMP. 

POSIX THREADS 

• Specified by the IEEE POSIX 1003.1c standard (1995). C Language only. 
• Part of Unix/Linux operating systems 
• Library based 
• Commonly referred to as Pthreads. 
• Very explicit parallelism; requires significant programmer attention to detail. 

OPENMP 

•  Industry standard, jointly defined and endorsed by a group of major computer 
hardware and software vendors, organizations and individuals. 

• Compiler directive based 



• Portable / multi-platform, including Unix and Windows platforms 
• Available in C/C++ and Fortran implementations 
• Can be very easy and simple to use - provides for "incremental parallelism". Can 

begin with serial code. 
• Other threaded implementations are common, but not discussed here:  

• Microsoft threads 
• Java, Python threads 
• CUDA threads for GPUs 

More Information 

• POSIX Threads tutorial: computing.llnl.gov/tutorials/pthreads 
• OpenMP tutorial: computing.llnl.gov/tutorials/openMP 

Distributed Memory / Message Passing Model 

 

• This model demonstrates the following characteristics:  
• A set of tasks that use their own local memory during computation. Multiple 

tasks can reside on the same physical machine and/or across an arbitrary 
number of machines. 

• Tasks exchange data through communications by sending and receiving 
messages. 

• Data transfer usually requires cooperative operations to be performed by each 
process. For example, a send operation must have a matching receive operation. 

Implementations: 

• From a programming perspective, message passing implementations usually 
comprise a library of subroutines. Calls to these subroutines are imbedded in source 
code. The programmer is responsible for determining all parallelism. 

• Historically, a variety of message passing libraries have been available since the 
1980s. These implementations differed substantially from each other making it 
difficult for programmers to develop portable applications. 

• In 1992, the MPI Forum was formed with the primary goal of establishing a standard 
interface for message passing implementations. 

https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/openMP/


• Part 1 of the Message Passing Interface (MPI) was released in 1994. Part 2 (MPI-2) 
was released in 1996 and MPI-3 in 2012. All MPI specifications are available on the 
web at http://www.mpi-forum.org/docs/. 

• MPI is the "de facto" industry standard for message passing, replacing virtually all 
other message passing implementations used for production work. MPI 
implementations exist for virtually all popular parallel computing platforms. Not all 
implementations include everything in MPI-1, MPI-2 or MPI-3. 

More Information 

• MPI tutorial: computing.llnl.gov/tutorials/mpi 

Data Parallel Model 

 

• May also be referred to as the Partitioned Global Address Space (PGAS) model. 
• The data parallel model demonstrates the following characteristics:  

• Address space is treated globally 
• Most of the parallel work focuses on performing operations on a data set. The 

data set is typically organized into a common structure, such as an array or cube. 
• A set of tasks work collectively on the same data structure, however, each task 

works on a different partition of the same data structure. 
• Tasks perform the same operation on their partition of work, for example, "add 4 

to every array element". 
• On shared memory architectures, all tasks may have access to the data structure 

through global memory. 
• On distributed memory architectures, the global data structure can be split up 

logically and/or physically across tasks. 

Implementations: 

• Currently, there are several relatively popular, and sometimes developmental, 
parallel programming implementations based on the Data Parallel / PGAS model. 

http://www.mpi-forum.org/docs/
https://computing.llnl.gov/tutorials/mpi/


• Coarray Fortran: a small set of extensions to Fortran 95 for SPMD parallel 
programming. Compiler dependent. More information: 
https://en.wikipedia.org/wiki/Coarray_Fortran 

• Unified Parallel C (UPC): an extension to the C programming language for SPMD 
parallel programming. Compiler dependent. More information: https://upc.lbl.gov/ 

• Global Arrays: provides a shared memory style programming environment in the 
context of distributed array data structures. Public domain library with C and 
Fortran77 bindings. More information: 
https://en.wikipedia.org/wiki/Global_Arrays 

• X10: a PGAS based parallel programming language being developed by IBM at the 
Thomas J. Watson Research Center. More information: http://x10-lang.org/ 

• Chapel: an open source parallel programming language project being led by Cray. 
More information: http://chapel.cray.com/ 

Hybrid Model 

 

 

 

• A hybrid model combines more than one of the previously described programming 
models. 

• Currently, a common example of a hybrid model is the combination of the message 
passing model (MPI) with the threads model (OpenMP).  
• Threads perform computationally intensive kernels using local, on-node data 
• Communications between processes on different nodes occurs over the network 

using MPI 
• This hybrid model lends itself well to the most popular (currently) hardware 

environment of clustered multi/many-core machines. 

https://en.wikipedia.org/wiki/Coarray_Fortran
https://upc.lbl.gov/
https://en.wikipedia.org/wiki/Global_Arrays
http://x10-lang.org/
http://chapel.cray.com/


• Another similar and increasingly popular example of a hybrid model is using MPI 
with CPU-GPU (Graphics Processing Unit) programming.  
• MPI tasks run on CPUs using local memory and communicating with each other 

over a network. 
• Computationally intensive kernels are off-loaded to GPUs on-node. 
• Data exchange between node-local memory and GPUs uses CUDA (or 

something equivalent). 
• Other hybrid models are common:  

• MPI with Pthreads 
• MPI with non-GPU accelerators 
• ... 

  

  

SPMD and MPMD 
Single Program Multiple Data (SPMD) 

 

• SPMD is actually a "high level" programming model that can be built upon any 
combination of the previously mentioned parallel programming models. 

• SINGLE PROGRAM: All tasks execute their copy of the same program 
simultaneously. This program can be threads, message passing, data parallel or 
hybrid. 

• MULTIPLE DATA: All tasks may use different data 
• SPMD programs usually have the necessary logic programmed into them to allow 

different tasks to branch or conditionally execute only those parts of the program 
they are designed to execute. That is, tasks do not necessarily have to execute the 
entire program - perhaps only a portion of it. 

• The SPMD model, using message passing or hybrid programming, is probably the 
most commonly used parallel programming model for multi-node clusters. 

  

Multiple Program Multiple Data (MPMD) 

 



• Like SPMD, MPMD is actually a "high level" programming model that can be built 
upon any combination of the previously mentioned parallel programming models. 

• MULTIPLE PROGRAM: Tasks may execute different programs simultaneously. The 
programs can be threads, message passing, data parallel or hybrid. 

• MULTIPLE DATA: All tasks may use different data 
• MPMD applications are not as common as SPMD applications, but may be better 

suited for certain types of problems, particularly those that lend themselves better 
to functional decomposition than domain decomposition (discussed later under 
Partitioning). 

Designing Parallel Programs 
Automatic vs. Manual Parallelization 

• Designing and developing parallel programs has characteristically been a very 
manual process. The programmer is typically responsible for both identifying and 
actually implementing parallelism. 

• Very often, manually developing parallel codes is a time consuming, complex, error-
prone and iterative process. 

• For a number of years now, various tools have been available to assist the 
programmer with converting serial programs into parallel programs. The most 
common type of tool used to automatically parallelize a serial program is a 
parallelizing compiler or pre-processor. 

• A parallelizing compiler generally works in two different ways: 

FULLY AUTOMATIC 

• The compiler analyzes the source code and identifies opportunities for parallelism. 
• The analysis includes identifying inhibitors to parallelism and possibly a cost 

weighting on whether or not the parallelism would actually improve performance. 
• Loops (do, for) are the most frequent target for automatic parallelization. 

PROGRAMMER DIRECTED 

• Using "compiler directives" or possibly compiler flags, the programmer explicitly 
tells the compiler how to parallelize the code. 

• May be able to be used in conjunction with some degree of automatic parallelization 
also. 

• The most common compiler generated parallelization is done using on-node shared 
memory and threads (such as OpenMP). 

• If you are beginning with an existing serial code and have time or budget 
constraints, then automatic parallelization may be the answer. However, there are 
several important caveats that apply to automatic parallelization:  
• Wrong results may be produced 
• Performance may actually degrade 
• Much less flexible than manual parallelization 
• Limited to a subset (mostly loops) of code 



• May actually not parallelize code if the compiler analysis suggests there are 
inhibitors or the code is too complex 

• The remainder of this section applies to the manual method of developing parallel 
codes. 

Communications 
Who Needs Communications? 

• The need for communications between tasks depends upon your problem: 

YOU DON'T NEED COMMUNICATIONS 

• Some types of problems can be decomposed and executed in parallel with virtually 
no need for tasks to share data. These types of problems are often called 
embarrassingly parallel - little or no communications are required. 

• For example, imagine an image processing operation where every pixel in a black 
and white image needs to have its color reversed. The image data can easily be 
distributed to multiple tasks that then act independently of each other to do their 
portion of the work. 

YOU DO NEED COMMUNICATIONS 

• Most parallel applications are not quite so simple, and do require tasks to share data 
with each other. 

• For example, a 2-D heat diffusion problem requires a task to know the temperatures 
calculated by the tasks that have neighboring data. Changes to neighboring data has 
a direct effect on that task's data. 

Factors to Consider 
There are a number of important factors to consider when designing your program's 
inter-task communications: 

COMMUNICATION OVERHEAD 

• Inter-task communication virtually always implies overhead. 
• Machine cycles and resources that could be used for computation are instead used 

to package and transmit data. 
• Communications frequently require some type of synchronization between tasks, 

which can result in tasks spending time "waiting" instead of doing work. 
• Competing communication traffic can saturate the available network bandwidth, 

further aggravating performance problems. 

LATENCY VS. BANDWIDTH 

• Latency is the time it takes to send a minimal (0 byte) message from point A to point 
B. Commonly expressed as microseconds. 



• Bandwidth is the amount of data that can be communicated per unit of time. 
Commonly expressed as megabytes/sec or gigabytes/sec. 

• Sending many small messages can cause latency to dominate communication 
overheads. Often it is more efficient to package small messages into a larger 
message, thus increasing the effective communications bandwidth. 

VISIBILITY OF COMMUNICATIONS 

• With the Message Passing Model, communications are explicit and generally quite 
visible and under the control of the programmer. 

• With the Data Parallel Model, communications often occur transparently to the 
programmer, particularly on distributed memory architectures. The programmer may 
not even be able to know exactly how inter-task communications are being 
accomplished. 

SYNCHRONOUS VS. ASYNCHRONOUS COMMUNICATIONS 

• Synchronous communications require some type of "handshaking" between tasks 
that are sharing data. This can be explicitly structured in code by the programmer, or 
it may happen at a lower level unknown to the programmer. 

• Synchronous communications are often referred to as blocking communications 
since other work must wait until the communications have completed. 

• Asynchronous communications allow tasks to transfer data independently from one 
another. For example, task 1 can prepare and send a message to task 2, and then 
immediately begin doing other work. When task 2 actually receives the data doesn't 
matter. 

• Asynchronous communications are often referred to as non-blocking 
communications since other work can be done while the communications are taking 
place. 

• Interleaving computation with communication is the single greatest benefit for using 
asynchronous communications. 

SCOPE OF COMMUNICATIONS 

• Knowing which tasks must communicate with each other is critical during the design 
stage of a parallel code. Both of the two scopings described below can be 
implemented synchronously or asynchronously. 

• Point-to-point - involves two tasks with one task acting as the sender/producer of 
data, and the other acting as the receiver/consumer. 
• Collective - involves data sharing between more than two tasks, which are often 

specified as being members in a common group, or collective. Efficiency of 

communications 

• Oftentimes, the programmer has choices that can affect communications 
performance. Only a few are mentioned here. 

• Which implementation for a given model should be used? Using the Message 
Passing Model as an example, one MPI implementation may be faster on a given 
hardware platform than another. 



• What type of communication operations should be used? As mentioned previously, 
asynchronous communication operations can improve overall program 
performance. 

• Network fabric—different platforms use different networks. Some networks 
perform better than others. Choosing a platform with a faster network may be an 
option. 

OVERHEAD AND COMPLEXITY 

• Finally, realize that this is only a partial list of things to consider! 

Synchronization 

• Managing the sequence of work and the tasks performing it is a critical design 
consideration for most parallel programs. 

• Can be a significant factor in program performance (or lack of it) 
• Often requires "serialization" of segments of the program. 

Types of Synchronization 
BARRIER 

• Usually implies that all tasks are involved 
• Each task performs its work until it reaches the barrier. It then stops, or "blocks". 
• When the last task reaches the barrier, all tasks are synchronized. 
• What happens from here varies. Often, a serial section of work must be done. In 

other cases, the tasks are automatically released to continue their work. 

LOCK / SEMAPHORE 

• Can involve any number of tasks 
• Typically used to serialize (protect) access to global data or a section of code. Only 

one task at a time may use (own) the lock / semaphore / flag. 
• The first task to acquire the lock "sets" it. This task can then safely (serially) access 

the protected data or code. 
• Other tasks can attempt to acquire the lock but must wait until the task that owns 

the lock releases it. 
• Can be blocking or non-blocking. 

SYNCHRONOUS COMMUNICATION OPERATIONS 

• Involves only those tasks executing a communication operation. 
• When a task performs a communication operation, some form of coordination is 

required with the other task(s) participating in the communication. For example, 
before a task can perform a send operation, it must first receive an acknowledgment 
from the receiving task that it is OK to send. 

• Discussed previously in the Communications section. 



Data Dependencies 
Definition 

• A dependence exists between program statements when the order of statement 
execution affects the results of the program. 

• A data dependence results from multiple use of the same location(s) in storage by 
different tasks. 

• Dependencies are important to parallel programming because they are one of the 
primary inhibitors to parallelism. 

How to Handle Data Dependencies 

• Distributed memory architectures - communicate required data at synchronization 
points. 

• Shared memory architectures -synchronize read/write operations between tasks. 

Load Balancing 

• Load balancing refers to the practice of distributing approximately equal amounts of 
work among tasks so that all tasks are kept busy all of the time. It can be considered 
a minimization of task idle time. 

• Load balancing is important to parallel programs for performance reasons. For 
example, if all tasks are subject to a barrier synchronization point, the slowest task 
will determine the overall performance. 

How to Achieve Load Balance 
EQUALLY PARTITION THE WORK EACH TASK RECEIVES 

• For array/matrix operations where each task performs similar work, evenly distribute 
the data set among the tasks. 

• For loop iterations where the work done in each iteration is similar, evenly distribute 
the iterations across the tasks. 

• If a heterogeneous mix of machines with varying performance characteristics are 
being used, be sure to use some type of performance analysis tool to detect any 
load imbalances. Adjust work accordingly. 

USE DYNAMIC WORK ASSIGNMENT 

• Certain classes of problems result in load imbalances even if data is evenly 
distributed among tasks. When the amount of work each task will perform is 
intentionally variable, or is unable to be predicted, it may be helpful to use a 
scheduler-task pool approach. As each task finishes its work, it receives a new 
piece from the work queue. 

• Ultimately, it may become necessary to design an algorithm which detects and 
handles load imbalances as they occur dynamically within the code. 



Granularity 
Computation / Communication Ratio 

• In parallel computing, granularity is a qualitative measure of the ratio of 
computation to communication. 

• Periods of computation are typically separated from periods of communication by 
synchronization events. 

Fine-grain Parallelism 

• Relatively small amounts of computational work are done between communication 
events. 

• Low computation to communication ratio. 
• Facilitates load balancing. 
• Implies high communication overhead and less opportunity for performance 

enhancement. 
• If granularity is too fine it is possible that the overhead required for communications 

and synchronization between tasks takes longer than the computation.  

Coarse-grain Parallelism 

• Relatively large amounts of computational work are done between 
communication/synchronization events 

• High computation to communication ratio 
• Implies more opportunity for performance increase 
• Harder to load balance efficiently  

Which is Best? 

• The most efficient granularity is dependent on the algorithm and the hardware 
environment in which it runs. 

• In most cases the overhead associated with communications and synchronization is 
high relative to execution speed so it is advantageous to have coarse granularity. 

• Fine-grain parallelism can help reduce overheads due to load imbalance. 

I/O 
The Bad News 

• I/O operations are generally regarded as inhibitors to parallelism. 
• I/O operations require orders of magnitude more time than memory operations. 
• Parallel I/O systems may be immature or not available for all platforms. 
• In an environment where all tasks see the same file space, write operations can 

result in file overwriting. 
• Read operations can be affected by the file server's ability to handle multiple read 

requests at the same time. 
• I/O that must be conducted over the network (NFS, non-local) can cause severe 

bottlenecks and even crash file servers. 



  

The Good News 

• Parallel file systems are available. For example:  
• GPFS: General Parallel File System (IBM). Now called IBM Spectrum Scale. 
• Lustre: for Linux clusters (Intel) 
• HDFS: Hadoop Distributed File System (Apache) 
• PanFS: Panasas ActiveScale File System for Linux clusters (Panasas, Inc.) 
• And more - see 

http://en.wikipedia.org/wiki/List_of_file_systems#Distributed_parallel_file
_systems 

• The parallel I/O programming interface specification for MPI has been available 
since 1996 as part of MPI-2. Vendor and "free" implementations are now commonly 
available. 

• A few pointers: 
• Rule #1: Reduce overall I/O as much as possible. 
• If you have access to a parallel file system, use it. 
• Writing large chunks of data rather than small chunks is usually significantly more 

efficient. 
• Fewer, larger files performs better than many small files. 
• Confine I/O to specific serial portions of the job, and then use parallel 

communications to distribute data to parallel tasks. For example, Task 1 could read 
an input file and then communicate required data to other tasks. Likewise, Task 1 
could perform write operation after receiving required data from all other tasks. 

• Aggregate I/O operations across tasks - rather than having many tasks perform I/O, 
have a subset of tasks perform it. 

Debugging 

• Debugging parallel codes can be incredibly difficult, particularly as codes scale 
upwards. 

• The good news is that there are some excellent debuggers available to assist:  
• Threaded - pthreads and OpenMP 
• MPI 
• GPU / accelerator 
• Hybrid 

• Livermore Computing users have access to several parallel debugging tools installed 
on LC's clusters:  
• TotalView from RogueWave Software 
• DDT from Allinea 
• Inspector from Intel 
• Stack Trace Analysis Tool (STAT) - locally developed 

• All of these tools have a learning curve associated with them - some more than 
others. 

http://en.wikipedia.org/wiki/List_of_file_systems#Distributed_parallel_file_systems
http://en.wikipedia.org/wiki/List_of_file_systems#Distributed_parallel_file_systems

